BIOSYNTHESIS OF STEROLS IN THE SEA CUCUMBER STICHOPUS CALIFORNICUS. Younus M. Sheikh and Carl Djerassi*

Department of Chemistry, Stanford University, Stanford, California 94305, U.S.A.

(Received in USA 23 May 1977; received in UK for publication 14 July 1977)

Various reports deal with the biosynthesis of Δ^5 and Δ^7 sterols in sea cucumbers. 1 While Numura² et al. failed to observe incorporation of acetate-1,2-¹⁴C into sterols of Stichopus japonicus, Goad et al.³ and Voogt and Over⁴ could show that Cucumaria elongata, C. planci, Holothuria tubulosa, and S. regallis can biosynthesize sterols from 2^{-14} C-mevalonate³ and sodium $\text{acetate-}\frac{14}{c}$; respectively. In continuation of our work on the biotransformation of lanosterol to the sea cucumber sapogenin holotoxinogenin, 5 we have now examined some of the later stages of the biosynthesis of sterols in the same sea cucumber and report that S. californicus can biosynthesize sterols de novo from ${}^{3}H_{2}$ C-COO-K⁺ and can transform 3- ${}^{3}H$ -lanosterol (1), 1,2- ${}^{3}H_{2}$ -cholesterol (2), and 3- 3 H-A⁷-cholestenol (<u>3</u>) to A⁵ and A⁷ sterols. The incubations and sterol isolations were conducted as described earlier.^{1,5} The nature of the sterols was established by comparison of GC retention times of the free sterols and their acetates over O.V. 25(3% on Gas Chrom Q) and O.V. 3(3% on Gas Chrom Q) with those of authentic samples and by a combination of GC-MS of the acetates. In order to determine the extent of incorporation of the radioactive substrates into the various sterols, the radioactive acetates were diluted with cold sterol acetates $(1:1)$ derived from S. californicus (with the exception of 3- $3H-$ lanosterol incubation derived sterols) and preparatively gas chromatographed (Table I). $3-\frac{3}{11}$ -Lanosterol (1) was prepared by reduction of lanostenone with LiAl $^{3}H_{\mu}$ (25 mCi) in ether whereas 3- ^{3}H -cholest-7-en-3B-ol (3) was prepared by reduction of cholest-7-en-3-one with Nab^3H_{μ} (25 mCi) in isopropanol. Cholestanol (9) (stanols) and $\frac{1}{2}$ (Δ^{7} -stenols) which cochromatographed were separated from cholesterol (Δ^{5} sterols) by TLC on AgNO₃-silica gel (using chloroform-ethanol 98:2). Alternatively stanols, Δ^7 sterols and Δ^5 -sterols were separated by treatment of the sterol mixture with m-chloroperbenzoic acid in chloroform followed by thin layer chromatography⁶ over silica gel developed with ethyl acetate - chloroform (7-13) (see Table II). In all incubations the radioactive sterol acetates

were diluted with cholesterol, Δ^7 -cholestenol ($\frac{4}{1}$) and cholestanol ($\frac{9}{2}$) and saponified with methanolic KOH prior to AgNO₃-silica gel thin layer chromatography or epoxidation. That the sterols derived from 3- $3H$ -lanosterol (1) and 3- $3H-\Delta^7$ -cholestenol (3) incubations retained tritium at C-3 was established by CrO $_3^{\prime}$ Py oxidation of the sterol mixtures. In either case less than 6% of the radioactivity was retained in the total ketone portion (crude) and probably represents the sterol pool arising from the catabolic products of the radioactive substrates. Our results (Tables I and II) lead to the following conclusions which offer considerable insight into our present knowledge¹ of sterol biosynthesis by holothuroids:

1. S. <u>californicus</u> can biosynthesize sterols de novo from $^3{\rm H_3}$ C-COO $^{\rm -}$ K $^{\rm +}$ and can transform <u>1</u>, 2 and 3 to Δ^5 and Δ^7 -unsaturated sterols. The efficiency of incorporation is $1>2>3>3$ H_3C -COO^{-K⁺} (Table 1) – the isolation of labeled cholesterol from incubation with $\underline{1}$ being particularly noteworthy.⁹

2. The sea cucumber can transform cholesterol (6)"'' to A'-cholestenol (4), and vice versa. The latter process proceeds with retention of tritium at position 3 (Table II); Δ^7 -unsaturated sterols obtained from incubation of either 2 or 3 were radioactive. It is possible¹ that the conversion of <u>6</u> to $\frac{1}{2}$ proceeds via the $\Delta^{5,7}$ -diene <u>5</u>. The converse of this process $(\Delta^7 \rightarrow \Delta^5, 7 \rightarrow \Delta^5)$ is ubiquitous in mammals.

3. The sea cucumber can alkylate the cholesterol side chain at position 24 to furnish both Δ^{5} - and Δ^{7} -24-methyl and ethyl sterols (Table I), thus excluding a purely dietary origin.

4. Our results conclusively show that the sea cucumber can convert cholesterol (6) and Δ^7 cholestenol (4) to cholestanol (9); the latter contained substantial radioactivity (Table II) thus excluding the transformation sequence $\frac{\mu+5+6+7+8+9}{2}$ so prevalent in mammals. 8 Direct bio-reduction of the double bond is a conceivable alternative.

Band	Rf.		Substrates: Total Radioactivity of TLC Bands (d/min)		
	(EtOAc-CHCl_3) 7-13				
A	0.67	Stanols	9.44 $x10^6$	8.32×10^{5}	
\overline{B}	0.52	Δ' -Sterols	$1.04 \times 10'$	1.06x10'	
	0.37	Λ^5 -Sterols	1.16x10'	$7.58x10^6$	

Table II. Thin Layer Chromatography of m-Cl-perbenzoic Acid Treated Sterols from Stichopus Californicus.

Acknowledgement. Financial support by the National Institutes of Health (Grant No. GM 06840) is gratefully acknowledged.

REFERENCES

- 1. For detailed review see L. J. Goad in "Biochemical and Biophysical Perspectives in Marine Biology" (D. C. Malins and J. R. Sargent, eds.), Academic Press, New York, 1976, pp. 282-300.
- 2. T. Nomura, Y. Tsuchiya, D. Andre, and M. Barbier, Bull. Jap. Soc. Scient. Fish., 35, 299 (1969)
- 3. L. J. Goad, I. Rubinstein, and A. G. Smith, Proc. Roy. Sot. Lond. B., 180, 223 (1972).
- 4. P. A. Voogt and J. Over, Comp. Biochem. Physiol., 45b, 71 (1973).
- 5. Y. **M.** Sheikh and C. Djerassi, J. Chem. Sot. Chem. Comm., 1057 (1976).
- 6. A. G. Smith and L. J. Goad, <u>Biochem. J</u>., <u>146</u>, 25 (1975); <u>ibid</u>., <u>33</u> (1975).
- 7. For conversion of cholesterol to Δ^7 -cholestenol in star fish see U. M. H. Fagerlund and D. R. Idler, Can. J. Biochem. & Physiol., 38, 997 (1960); A. G. Smith and L. J. Goad, FEBS Lett., 12, 233 (1971).
- a. Reduction of Δ^5 -3B-ols to saturated 3B-ols via. the Δ^4 -3-oxo grouping is a common reaction in the formation of steroid hormones in mammals. See H. H. Rees and T. W. Goodwin "Biosynthesis of Triterpenes, Steroids and Carotenoids", in Specialists Periodical Report on Biosynthesis, **Vol. 1,** Ch. 3, pp. 85-90, The Chemical Society, London, 1972.
- 9. The conversion of lanosterol to cholesterol involves the elimination of the C-14 and C-4 attached methyl groups. It is generally accepted that the 4-methyl groups are eliminated via a 3-keto-4-carboxylic acid (see ref. 8). Retention of tritium in cholesterol and its homologs biosynthesized from 1 is thus suggestive of an alternative mechanism in the sea cucumber or in symbionts residing within the animal.